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Calculation of PID Controller Parameters for
Unstable First Order Time Delay Systems
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Abstract— In this paper, a numerical approach for the fractional order proportional-integral-derivative controller (FO-PID)
design for the unstable first order time delay system is proposed. The controller design is based on the system time delay. In
order to obtain the relation between the controller parameters and the time delay, for several amounts of the plant time delay
and the fractional derivative and integral orders, the ranges of stabilizing controller parameters are determined. First, for a
typical time delay plant and the fractional order controller, the D-decomposition technique is used to plot the stability region(s).
The controller derivative gain has been considered as one. By changing the fractional derivative and integral orders, a small
amount in each stage, some ranges of proportional and integral gains are achieved which stabilize the system, independent of
the fractional ,  orders. Therefore a set of different controllers for any specified time delay system is obtained. This trend for
several various systems with different values of time delay has been done and the proportional and integral gains of the
stabilizing controller have been calculated. Then we have fitted these values to the exponential functions and the proportional
and integral gains have been obtained in terms of the system time delay. Using these relations, we can specify some ranges of
the proportional and integral gains and obtain a set of stabilizing controllers for any given system with certain time delay. In
these relations, fractional derivative and integral orders haven’t part, and therefore can be applied to any fractional order
controller design (for 0.1 , 0.9  ). Thus we have reached a numerical approach from the graphical D-decomposition
method. In this method, there is freedom in choosing the values of and  (they can fall in the range of [0.1, 0.9] ), and there
is no need to plot the stability boundaries and check the different regions to determine the stable one. This numerical method
does not offer the complete set of the stabilizing controllers. Whenever the system time delay is more, the specified range of
proportional and integral gains will be smaller. In other words, the extent of obtained stability region is inversely proportional to
the system time delay. Finally, the introduced numerical approach is used for stabilizing an unstable first order time delay
system.

Index Terms—Fractional order PID controller, numerical approach, time delay.
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1  INTRODUCTION
LTHOUGH great advances have been achieved in
the control science, the proportional-integral-
derivative controller is still the most used industrial

controller.
   According to the Japan Electric Measuring Instrument
Manufacturers’ Association in 1989, PID controller is used
in more than 90% of control loops [1], [2]. As an example
for the the application of PID controllers in industry, slow
industrial processes can be pointed, low percentage over-
shoot and small settling time can be obtained by using
this controller [1]. Widespread application of the PID con-
troller is due to the simple and implementable structure
and its robust performance in the wide range of the work-
ing conditions [3], [4]. This controller provides feedback,
it has the ability to eliminate steady-state offsets through
integral action, and it can anticipate the future through
derivative action. The mentioned benefits have caused
widespread use of the PID controllers. The derivative
action in the control loop will improve the damping, and
therefore by accelerating the transient response, a higher
proportional gain can be obtained. Precise attention must
be paid to setting the derivative gain because it can ampl-
ify high-frequency noise. In this paper, for the fractional
order PID controller design, the derivative gain ( dk ) is set
1, that will result in design simplicity. Most available
commercial  PID  controllers  have  a  limitation  on  the  de-

rivative gain [2]. During the past half century, many theo-
retical and industrial studies have been done in PID con-
troller setting rules and stabilizing methods [3]. So far
several different techniques have been proposed to obtain
PID controller parameters and the research still continues
to improve the system performance and increase the con-
trol quality. Ziegler and Nichols in 1942 proposed a me-
thod to set the PID controller parameters. Hagglund and
Astrom in 1995, and Cheng- Ching in 1999, introduced
other techniques [5]. By generalizing the derivative and
integral orders, from the integer field to non-integer
numbers, the fractional order PID controller is obtained.
In  fractional  order  PID  controller  design,  there  is  more
freedom in selecting the parameters and more flexibility
in their setting . This is due to posse of choice -both integ-
er and non-integer numbers- for integral and derivative
orders. Therefore control requirements will be easier to
comply [6], [7].
   Before using the fractional order controllers in design,
an introduction to fractional calculus is required. Over
300 years have passed since the fractional calculus has
been introduced. The first time, calculus generalization to
fractional, was proposed by Leibniz and Hopital for the
first time and afterwards, the systematic studies in this
field by many researchers such as Liouville (1832),
Holmgren (1864) and Riemann (1953) were performed [8].
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Fractional calculus is used in many fields such as electric-
al transmission losses systems and the analysis of the me-
chatronic systems. Some controller design techniques are
based on the classic PID control theory generalization [7].
Due to the recent advances in the fractional calculus field
and the emergence of fractance electrical element, the
fractional order controller implementation has become
more feasible [6], [9], [10]. Consequently, fractional order
PID controller analysis and synthesis have received more
attention [11], [12], [13], [14], [15], [16]. Results obtained
from various articles published in this field, indicate that
the fractional order PID controllers enhance the stability,
performance and robustness of the feedback control sys-
tem [6], [11], [12]. Maiti, Biswas and Konar [1] have signif-
icantly reduced the overshoot percentage, the rise and
settling times, compared to classic PID controller, using
the fractional order PID controller. Applying the fraction-
al order PID controller ( PI D ), the system dynamic cha-
racteristics can be adjusted better [17]. Many dynamic
processes can be described by a first order time delay
transfer function [18]. The need to control time delay
processes can be found in different industries such as roll-
ing mills. Varying time delay process control becomes
difficult using classical control methods [19]. Simple for-
mulas are available for setting the PID controller parame-
ters for the stable first order time delay system, but when
the system is unstable, the problem will be more difficult
and therefore the unstable systems control requires more
attention. Many attempts have been made in field of their
stabilization [20], [21], [22], [23], [24]. So far, various de-
sign techniques have been suggested for the fractional
order controller design [13], [14], [25], [26]. It has been
shown that fractional order PID controllers have a better
performance comparing to integer order ones, for both
integer and fractional order control systems.
   In the controller design for an unstable system, the most
important design issue is stabilizing the closed-loop sys-
tem [6]. As an example of previous research in stabilizing
the unstable processes, we can point to De Paor and
O’Malley research in 1989, which discussed unstable open
loop system stabilization with a PID or PD controller [23].
Hamaci [3] has concluded that fractional order PID con-
troller has a better response than classic one. In this pa-
per, a numerical method is introduced to design the frac-
tional order controllers for any unstable first order system
with specified time delay.

2  THE FRACTIONAL ORDER PID CONTROLLER
DESIGN

2.1 A Review to Design Methods
Hamamci and Koksal [4] have designed the fractional
order PD controller to stabilize the integration time delay
system, which result that stability region extent is re-
versed with the system time delay. Maiti, Biswas, and
Konar, in 2008, could significantly reduce the overshoot
percentage,  the  rise  time,  and  the  settling  time  by  using
fractional order PID controllers. They introduced PSO
(particle swarm optimization) optimization technique for
the fractional order PID controller design. In their me-

thod, the controller has been designed based on required
maximum overshoot and the rise time. In the mentioned
technique, the closed loop system characteristic equation
is minimized in order to get an optimal set of the control-
ler parameters [1]
    One of the methods to obtain the complete set of stabi-
lizing PID controllers is plotting the global stability re-
gions in the , ,p i dk k k -space, which is called the D-
decomposition technique [3], [4], [6], [8]. This technique is
used in both fractional and integer order systems analysis
and design.
   Cheng and Hwang [6] has designed the fractional order
proportional - derivative controller to stabilize the unsta-
ble first order time delay system and D- decomposition
method has been used. The graphical D- decomposition
technique results for such systems are simple.
   The D- decomposition technique can be used for frac-
tional order time delay systems and fractional order chaos
systems. In this method, the stability region boundaries
are obtained, which are described by real root boundary
(RRB), infinite root boundary (IRB), and complex root
boundary (CRB). By crossing these boundaries in the

, ,p i dk k k -space, several regions will be achieved. By
choosing an arbitrary point  from each region and check-
ing its stability, the region’s stability is tested. If the se-
lected point is stable, the region including that point
would be stable, and if the selected point is not stable
then the region would be unstable. By obtaining the sta-
bility boundaries and plotting the stability regions, a
complete set of stabilizing fractional order controller pa-
rameters is obtained. The mentioned algorithm is simple
and effective.

2.2 The D-decomposition Technique
In general, the characteristic equation of the fractional
order closed loop system is defined as

1 1
1 1 0... .k kq q q

k kP s p s p s p s p (1)
   In P parameter space, the boundaries between stable
and unstable regions are defined by three following parts:

Real root boundary (RRB): A real root crosses over the
imaginary axis at s=0. Thus the real root boundary is ob-
tained by setting s = 0 in (1). RRB is determined as 0 0p .

Complex root boundary (CRB): A pair of complex
roots, cross over the imaginary axis at s j .

Infinite root boundary (IRB): An infinite real root
crosses over the imaginary axis at s j . Therefore IRB
line is obtained by putting 0kp  in (1). First, by using the
D-decomposition graphical method, stability boundaries
and then stability region(s), are obtained. RRB and IRB
lines are given by

: 0iRRB k (2)
0 1

: .
1dIRB k (3)

   Then by writing pk  and ik equations in terms of dk  ,  ,
and  , the CRB curve equation is derived. The  transfer
function of the plant and fractional order PID controller
and closed-loop system characteristic equations have
been given in (4), (5), and (6), respectively. Fig. 1 shows
the block diagram of the closed loop system.
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Fig. 1. The closed loop system block diagram.
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CRB curve equations are given in (7).
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   By plotting IRB and RRB lines and CRB curve in
the ,p ik k -plane, for fixed dk , , and  , as runs from
0 to  , Stability regions are obtained [3], [4], [6], [8]. As-
suming 1dk , the D-decomposition technique is used for
various values of ,  and , and stability regions are
obtained by arbitrary selected test points. In this paper,
Nyquist stability test has been used to check the stability
of the selected point of each region. The range of changes
for  and  are considered between zero and 1.

3  OBTAINING THE CONTROLLER PARAMETERS
BASED ON THE PLANT TIME DELAY

To determine the relations between the controller para-
meters with time delay system, the stability regions are
determined using D-decomposition technique. In Fig. 2

the stable region of
0.5

1

se
s

plant with 0.4 0.7PI D controller is

marked in gray. Notice that the small region that includes
small proportional and integral gains (near the origin) is
not a part of the stability regions.

Fig. 2. The stability region for the
0.5

1

se
s

plant and the
0.4 0.7PI D controlle.

   Two limited rectangles are selected from the stability
region, one rectangle in the first quarter of the ,p ik k -
plane and another one in the second quarter of the plane.
Fig. 3 shows two selected rectangles. Rectangle (1) which
includes positive values of the proportional and integral
gains is marked in light gray, and rectangular (2) which
contains negative proportional gain and positive integral
gain, is marked in dark gray. Two rectangles are chosen
so that the minimum value of ik is zero (means that rec-
tangles have been placed on the RRB line) and the mini-
mum  value  of pk is close to zero as much as possible.
Maximum value of the proportional gain in the second
rectangle is selected near zero as much as possible.

Fig. 3. Two selected rectangles, for the
0.5

1

se
s

system,

which is controlled by the 0.4 0.7PI D controller.

   Considering the mentioned criteria for selecting two
stability rectangles, for various amounts of the system
time delay, we have obtained the minimum and maxi-
mum values of pk  and maximum value of ik . First, by

considering different PI D  controllers 0 , 1  for
0.1

1

se
s



4 International Journal of Scientific & Engineering Research, Volume 2, Issue 3, March-2011
ISSN 2229-5518

IJSER © 2011

system, we choose two mentioned stability rectangles. In
both rectangles, the maximum and minimum value of the
proportional gain and the maximum value of the integral
gain are shown with

maxpk ,
minpk  and

maxik ,respectively. By
changing the fractional derivative and integral orders, the
position of the rectangles on the ,p ik k -plane will change,
but in all, some values of pk and ik  are the same.
   This procedure is performed in two stages. First, rectan-
gle  1  is  considered.  For 0.1  ,  considering  several  con-
trollers with different fractional orders, it can be observed
that if the controller proportional gain is selected between
15 and 40 and the integral gain between zero and 25, for
any fractional derivative and integral orders between 0.1
and 0.9, the controller will stabilize the system. By chang-
ing the value of the system time delay, this process is re-
peated and  for each system, some  ranges of pk and ik  are
determined, any arbitrary controller with these obtained
parameters (where  the fractional orders  and are be-
tween 0.1 and 0.9) can stabilize the system. For some first
order systems with the time delay , the obtained ranges
of stabilizing controller parameters are given in Table 1.
These pk and ik  values belong to rectangle 1 within the
stable region and have been obtained independently of
the fractional derivative and integral orders. To study
time delay effect on the range of controller parameters, in
each step has been changed slightly (0.05).
   To obtain the proportional and integral gains range in-
dependent of fractional derivative and integral orders, we
consider different values of  and , which change
slightly in each step (0.05). By increasing the system time
delay, the values of the minimum and maximum propor-
tional gain and maximum selected value of the integral
gain become smaller, Table 1 also confirms this reduction.

Table 1. The stabilizing parameters ranges in rec-
tangle 1(for any arbitrary PI D  control-

ler 0.1 , 0.9 )

maxik
maxpk

minpk

2540150.1

51450.3

1.5520.7

0.83.31.31

0.72.61.11.3

0.251.411.8

 To obtain these ranges based on the system time delay,
several different systems with 0.1 1 have been consi-
dered. Different values of the time delay are considered
from 0.1 up to 1, and the obtained minimum and maxi-
mum values of pk and ik are fitted to the exponential func-
tions. In Fig. 4 the obtained proportional gain ranges
(which will result the stabilizing controller, independent-
ly of the fractional derivative and integral orders) and
also their fitting to the exponential functions are shown.

The upper curve is obtained from the maximum propor-
tional gain values fitting, and the underlying curve is ob-
tained from fitting the integral gain minimum values.
These curves should not exceed

min max
,p pk k  .

Fig. 4. The selected ranges for the proportional gain and
the fitting results.

Maximum proportional gain in rectangle 1 is fitted to
. .b da e c e , such that the resulting exponential function

is close to the maximum value of pk  as much as possible
(minimize the fitting error), also the fitting result should
be located between the selected minimum and maximum
proportional gain values. This fitting result is

10.8 1.876 16e e . Similarly, the minimum proportional
gain in rectangle 1, is fitted to 15 1.845 8e e . The maxi-
mum integral gain which is selected from rectangle 1 is
fitted to 13 2.560.1 8e e . According to these fitting re-
sults, for FO_PID controller design for the system with
the time delay  ( 0.1 1 ), selecting the proportional
gain from (9), the integral gain from (10), and the frac-
tional orders from the given range in (11), the closed-loop
system would be stable.
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11 15
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8 16
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b d
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0 60
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. . ,
0 8

3

b d
i

a
b

k a e c e
c

d

(10)

0.1 , 0.9 (11)

Therefore, for any unstable first order system with time
delay  ( 0.1 1 ), the obtained exponential functions can
be used to calculate the stabilizing controller parameters
and to obtain a set of proportional and integral gains.
These values can be used in any controller which its frac-
tional derivative and integral orders are between 0.1 and
0.9, and therefore a wide set of the stabilizing controllers
will be available. In this paper, the system time delay is
considered smaller than or equal to the system time con-
stant.
   All obtained exponential functions, are only the func-
tions of the system time delay, and are independent of the
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fractional controller derivative and integral orders. Now,
we explain the system time delay effect on the position of
rectangle2 in the ,p ik k –plane and like before, we consider
different values of the time delay and the derivative order
and the integral order. For several values of the system
time delay 2 , the position of rectangle 2 has been ob-
tained and Table (2) shows the minimum and maximum
proportional gain and maximum integral gain in rectan-
gle 2.

Table2. The stabilizing parameters range in rectangle 2,
for some delay system.

maxik
maxpk

minpk

150-27-45.70.1
30-4.7-10.50.4
17-2.3-6.70.6
10-0.9-4.30.9
6.8-0.5-3.11.2
4.9-0.3-2.41.5
3.10-1.92

   Ranges which were obtained for the proportional and
integral gains, are independent of and  values, and
for any and between [0.1, 0.9] the resultant controller
will stabilize the closed loop system. When the system
time delay increases, the minimum and maximum of pk
and maximum of ik become smaller, as seen in Table 2. In
controller design for the plant with specified delay, if the
relations between stabilizing parameters and the plant
time delay are given, using them a set of stabilizing con-
trollers can be obtained. To get these relations, minimum
and maximum of proportional gain and maximum of
integral gain are fitted to the exponential functions of
.The fitting results are given in Table 3.

Table3. The rectangle2 boundaries fitted to the expo-
nential functions (independent of and )

0.1 1;0.1 , 0.9
12 1.798 18.5e eFitting result of

minpk

6.3 0.948 2.1e eFitting result of
maxpk

12 2310 55e eFitting result of
maxik

   Using the exponential functions which are obtained
from fitting the boundaries of the two selected rectangles,
various ranges of stabilizing controllers can be obtained,
and for the system with specified delay some values of
stabilizing proportional and integral gains can be easily
obtained.
   For varying time delay systems, these exponential func-

tions can be used to design the fractional order PID con-
troller (with any arbitrary fractional derivative and
integral order between 0.1 and 0.9). Since the obtained
relations can be used in fractional controller design
for 0.1 , 0.9  , there are many alternatives in the con-
troller choice. When the system time delay increases, the
range of parameters would be smaller.

4  ILLUSTRATION

We consider an unstable first order plant which its trans-

fer function is
0.34

1

se
s

 . We use the introduced numerical

method to obtain a set of stabilizing controller for this
system. Some ranges of the proportional and integral
gains are given in (12) .Here, both gains are positive.

min

15 1.845 8 4.62pk e e (12a)
max

10.8 1.876 16 10.6pk e e                                     (12b)
min

0ik                                                                       (12c)
max

13 2.560.1 8 4.1ik e e                                        (12d)
Also, we can refer to Table 3 to calculate the controller
parameters. According to this table, by choosing the pro-
portional gain in the range [-12,-7.2], integral gain in the
range [0, 33.1] and arbitrary  and in the range [0.1,
0.9], a set of stabilizing controllers will be obtained.

5  CONCLUSION

In this paper, a numerical method has been proposed to
design a fractional order PID controller for the unstable
first order time delay system. In this method, some ranges
of the proportional and integral gains are obtained based
on the system time delay. If the proportional and the
integral gains are selected from these ranges, the closed-
loop system would be stable. The arbitrary fractional de-
rivative and integral orders are selected from the range
[0.1, 0.9]. The D-decomposition technique is used to de-
rive the numerical relations. By introduced numerical
method, without having to determine the stability boun-
daries and plotting them in the ,p ik k -plane and checking
the stability of all regions, a set of fractional order control-
ler parameters for an unstable first order time delay sys-

tem with transfer function
1

se
s

is determined easily. In

fractional controller design using the mentioned relations,
derivative and integral orders can be chosen arbitrary
numbers between 0.1 and 0.9. Although this approach
does not get all the stabilizing controllers for the specified
time delay system, but we have a simple design method
because of simple calculations and the freedom to choose
the fractional  and orders. This method can also be
used in varying time delay systems to obtain the propor-
tional and integral gains as functions of the time delay,
wherein using classical control methods will be difficult
for these systems.
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